

PRODUCT DATA REPRESENTATION AND EXCHANGE

Title

:

Part

:

Purpose of this document as it relates to the target document is:

Current Status:

KEYWORDS: Document Status/Dates
Part Documents Other SC4 Documents

Working Draft
Project Draft
Released Draft
Technically Complete
Editorially Complete
ISO Committee Draft

Working
Released
Confirmed
Approved

Primary Content
Issue Discussion
Alternate Proposal
Partial Content

ABSTRACT:

Owner/Editor:
Address:

Telephone/FAX:
E-Mail:

Alternate:
Address:

Telephone/FAX:
E-Mail:

ISO TC184/SC4/WG11/N002

Date:

August 21, 1996

Supercedes SC4/

EXPRESS-X Reference Manual

X

Working

X

8/21/96

The intended use of EXPRESS-X is to define mappings between pairs of EXPRESS schemas, where
one EXPRESS scheme represents an abstract view of the other. These mappings are defined in a declarative
fashion. For example, EXPRESS-X can be used to implement the mapping of entities from the AIM of an
Application Protocol to its ARM. The EXPRESS-X language controls these mapping by specifying the
conditions under which a new view entity should be created, and how the attributes should be derived for that
new view entity. EXPRESS-X combines the EXPRESS-V language (ISO TC184/SC4/WG5 N251) with the
EXPRESS-M language (ISO TC184/SC4/WG5 N243).

Mapping Language
View
Schema
EXPRESS
Database

Lab for Industrial Information Infrastructure
Rensselaer Polytechnic Institute
CII Building, Room 7015
Troy, New York 12180-3590
USA

+1 (518) 276-6751 / +1 (518) 276-2702

rose@rdrc.rpi.edu

 Comments to Reader

This version of the specification is compiled from the contributions of several people. There is ample room for
improvement not only in individual sections but also in ensuring the consistency between sections. This version
remains technically incomplete.

ii

Contributors

Ji Wen Rensselaer Polytechnic Institute
Martin Hardwick Rensselaer Polytechnic Institute
David L. Spooner Rensselaer Polytechnic Institute
Craig Schlenoff Rensselaer Polytechnic Institute
John Valois STEP Tools, Inc.

Ian Bailey CIMIO Ltd.

Meetings

Thi d d i h F M k 4 0 2

EXPRESS-X Reference Manual

iii

Table of Contents

1 Introduction to EXPRESS-X ...1

1.1 Motivation for EXPRESS-X..1
1.2 What is EXPRESS-X...2
1.3 Updating Views -- Two-Way Mappings...2
1.4 Definitions..3

2 Fundamental Principles..4

2.1 Logical Organization for an EXPRESS-X Specification...4
2.2 The Mapping Schema ..4
2.3 Materializing a View..5
2.4 Specification of Mappings ...6

2.4.1 VIEW Declaration...6
2.4.2 COMPOSE

Declaration ...6
2.4.3 MEMBER Declaration..7

2.5 Conformance Levels ..7

3 Language Specification Syntax ..8

3.1 Basic Language Elements ..8
3.2 Character Set..8
3.3 Keywords ...8
3.4 Symbols ...8
3.5 The Logical Organization of an EXPRESS-X Specification ...8
3.6 Defining Mapping Schemas...8
3.7 Global Declarations in a Mapping Schema ...9
3.8 Other Declarations in a Mapping Schema ...10
3.9 The Logical Organization of a View Mapping Declaration...11
3.10 The FROM Clause ...12
3.11 The WHEN Clause...13
3.12 The Logical Organization of a Compose Mapping Declaration14
3.13 Statements in View and Compose Mapping Declarations ...15

3.13.1 Enhanced Assignment Statement..15
3.13.1.1 Coercion in Assignment Statements ..16
3.13.1.2 Enhancements to Expressions in Assignment Statements17
3.13.1.3 The IS Operator..18
3.13.1.4 Casting in Expressions...18
3.13.1.5 Reference to a Manually Instantiated Entity Instance19

3.13.2 FROM Statements...19
3.13.3 WHEN Statements ..20
3.13.4 Initialize Statement ...21
3.13.5 DELETE Statement ..21

Thi d d i h F M k 4 0 2

EXPRESS-X Reference Manual

iv

3.13.6 Instantiation Statement..22
3.14 The Logical Organization of a Member Mapping Declaration..22
3.15 Structure of a Mapping Schema...24

Appendix A: EXPRESS-X Example 1...26
Appendix B: EXPRESS-X Example 2...29
Appendix C: EXPRESS-X Example 3 ..31
Appendix D: EXPRESS-X Example 4 ..36
Appendix E: EXPRESS-X Example 5...40
Appendix F: EXPRESS Language Syntax ...42

F.1 Tokens ..42
F.1.1 Keywords ..42
F.1.2 Character classes ...44
F.1.3 Lexical Elements...45
F.1.4 Remarks ..45
F.1.5 Interpreted Identifiers..45

F.2 Grammar Rules ..45

Appendix G: EXPRESS-X Extensions to the EXPRESS Language51

G.1 Tokens Added..51
G.2 Syntax Rules Added ..51
G.3 Modifications or Extensions To The Existing EXPRESS Syntax Rules...........................53

EXPRESS-X Reference Manual

v

Foreword

This document describes the EXPRESS-X language, which currently is not an official Part of ISO
10303. The document has been prepared by the Laboratory for Industrial Information Infrastruc-
ture at Rensselaer Polytechnic Institute, who developed the EXPRESS-V language (ISO TC184/
SC4/WG5 N251). It incorporates concepts from the EXPRESS-M language developed by
CIMIO, Ltd. (ISO TC184/SC4/WG5 N243).

This is a Working Draft.

The EXPRESS-X language described in this document is related to a series of Parts which
together comprise the International Standard ISO 10303 Industrial Automation Systems - Product
Data Representation and Exchange. The Parts are as follows:

-- ISO 10303-1 Overview and Fundamental Principles;

-- ISO 10303-11 Description Methods: The EXPRESS Language Reference Manual;

-- ISO 10303-21 Clear Text Encoding of the Exchange Structure;

-- ISO 10303-22 STEP Data Access Interface Specification

-- ISO 10303-31 Conformance Testing Methodology & Framework: General Concepts;

-- ISO 10303-41 Integrated Generic Resources: Fundamentals of Product Description and Sup-
port;

-- ISO 10303-42 Integrated Generic Resources: Geometric and Topological Representation;

-- ISO 10303-43 Integrated Generic Resources: Representation Structures;

-- ISO 10303-44 Integrated Generic Resources: Product Structure Configuration;

-- ISO 10303-46 Integrated Generic Resources: Visual Presentation;

-- ISO 10303-101 Integrated Application Resources: Draughting;

-- ISO 10303-201 Application Protocol: Explicit Draughting;

-- ISO 10303-203 Application Protocol: Configuration Controlled Design.

The reader may obtain information on these Parts of ISO 10303 from the ISO Central Secretariat.

Thi d d i h F M k 4 0 2

EXPRESS-X Reference Manual

1

1 Introduction to EXPRESS-X

ISO 10303 is a series of International Standards for the computer-sensible representation and
exchange of product data. The objective is to provide a mechanism capable of describing product
data throughout the life cycle of a product, independent from any particular system. The nature of
this description makes it suitable not only for file exchange, but also as a basis for implementing
and sharing product databases and archiving.

Each International Standard in the ISO 10303 series is published as a separate Part. Parts are
grouped into one of the following classes: description methods, integrated resources, application
protocols, implementation forms, and conformance testing. The classes are described in ISO
10303-Part 1.

This document describes the EXPRESS-X language, which can be used to define mappings
between entities from one EXPRESS schema to entities in another schema that represents an
abstract view of the first. This satisfies an industrial need to easily tailor information models to
meet the needs of individual application systems.

Major subdivisions in this reference manual are:

-- Introduction to EXPRESS-X

-- Fundamental Principles

-- Language Definition

-- Examples of EXPRESS-X

-- Syntax Rules for EXPRESS-X

The remainder of this introduction provides the reader with background on the EXPRESS-X con-
cept and the definitions of key terms.

1.1 Motivation for EXPRESS-X

By its nature, a representation and exchange standard for product data such as STEP must be
complete and unambiguous. As a result, it is large and contains details that many individual appli-
cation systems will not need. In other words, it is the union of the requirements of these applica-
tion systems. This implies that a simplified view of a product model that omits unnecessary details
of the model should be sufficient for many applications. Using such a simplified view is desirable
for these application systems, since such a view is conceptually easier to understand and process
within the application system. This is especially true for legacy systems.

Unfortunately, the optimal simplified view of a product model for one application system may not
be the optimal view for another application system, even if the two systems are related. As a
result, there is a need to be able to easily create views of product models that are tailored to indi-
vidual application systems.This will in general improve the usability of the STEP standards in
many situations.

In STEP, a product model is defined using EXPRESS. This means that a view of a product model
must be based on the EXPRESS definition of that product model. Thus, for STEP, a language is
needed that facilitates definitions of views of EXPRESS information models. This is the purpose
of EXPRESS-X. It is an extension of EXPRESS that includes constructs for defining views of
EXPRESS information models.

Thi d d i h F M k 4 0 2

EXPRESS-X Reference Manual

2

Thus, the goal of the EXPRESS-X language is to define mappings between information models
defined in EXPRESS as shown in Figure 1. An implementation of the EXPRESS-X language
must include a compiler for validating the syntax of an EXPRESS-X definition and a run-time
system for materializing a view.

FIGURE 1.

EXPRESS-X Overview

1.2 What is EXPRESS-X

EXPRESS-X allows one to create alternate representations of EXPRESS models and mappings
between EXPRESS models and other applications (e.g., IGES). These alternate representations
are called

views

 of the original models. The algorithm for deriving the entity types in a view from
the entities in an original EXPRESS model is specified using various types of mapping declara-
tions.

Creation of a view of an EXPRESS model requires two phases: materialize and compose. In the
materialize phase, the view entity instances are created, along with those attributes of the new
view instances that depend only on data from the entities in the original EXPRESS model. In the
compose phase, attributes of the new view instances that depend on other view instances, and
hence could not be initialized during the materialize phase, are created. An example of such an
attribute is one that represents a relationship between view instances. More than one pass may be
needed in the compose phase if complex dependencies exist between the attributes.

1.3 Updating Views -- Two-Way Mappings

In many situations, it is desirable to allow changes made to the entity instances in a view to be
mapped back to the original EXPRESS model from which the view was created. This can be done
in EXPRESS-X by defining a second set of mappings (i.e., a second

SCHEMA-MAP

 as defined in
Chapter 3) that maps from a view back to the original model. In this case, since the entity
instances already exist in the original model, only a compose phase is needed.

EXPRESS
Information

Model

View
Information

Model

Model
Instance

View
Instance

EXPRESS-X
Language

EXPRESS-X
Run-time

Materialization

EXPRESS-X Reference Manual

3

An example of updating views is given in Appendix E.

1.4 Definitions

The EXPRESS-X language uses terminology consistent with that of EXPRESS whenever possi-
ble. Definitions of terms that are not part of EXPRESS follow:

View:

An abstraction of an information model tailored for some application system or user that
omits unnecessary details and reorganizes the remaining information into a more easily used form
for the application or user.

Base Schema:

 An EXPRESS information model.

Base Model:

 An instantiation of a base schema.

Base Entity Type

: An entity type defined in a base schema.

Base Instance

: An instance of an entity type defined in a base schema.

View Schema:

 An EXPRESS information model that defines entities derived from the entities in
a base schema.

View Model

: An instantiation of a view schema.

View Entity Type

: An entity type defined in a view schema.

View instance

: An instance of an entity type defined in a view schema.

Materialize

: The process of creating a view model from a base model.

Mapping Schema

: An EXPRESS-X schema that defines the detailed algorithms for mapping the
entity types from a base schema to a view schema.

Mapping

: A declaration in a mapping schema that defines the algorithm for mapping a base entity
type to a view entity type.

EXPRESS-X Reference Manual

4

2 Fundamental Principles

In database terminology, a

view

 is a perspective of a database. There may be many views for a
given physical database, each view tailored to the requirements of a particular application pro-
gram or user. A view may omit parts of the database that are of no interest to the application sys-
tem or user for which the view was created. It may reorganize the database by changing its
structure and/or the data types of the data it contains. The goal of creating a view is to simplify the
use of the database by the application system or user for which the view was created.

2.1 Logical Organization for an EXPRESS-X Specification

The specification of a view using EXPRESS-X requires the definition of three schemas, two of
which are ordinary EXPRESS schemas (see Figure 2). The first of these is called the

base schema

and defines the schema for the original product model from which the view will be derived. The
second of these is the

view schema

 which defines the product model for the materialized view -
i.e., the entity types that will be in the view and the attributes for each of these entity types. Both
these schemas are defined as ordinary EXPRESS schemas.

The third schema is the mapping schema and is defined using the EXPRESS-X language. The
mapping schema defines mappings between entities in the base schema and the view schema.
Each mapping specifies some or all of the following information:

• A group of entity types in the base schema from which an entity type in the view schema
is created,

• A predicate defined over this group of entity types from the base schema that specifies the
conditions that must be true for a new instance of the view entity type to be created, and

• Specifications of how the values for each of the attributes of a new view instance are to be
computed once the new view instance is created.

2.2 The Mapping Schema

As shown in Figure 2, a mapping schema defines a relationship between information models
defined as

SCHEMA

’s in EXPRESS. The mapping schema itself is also an information model
defined as a

SCHEMA_MAP

 in EXPRESS-X. A mapping schema (i.e.,

SCHEMA_MAP

) is defined so
that:

• one can better understand the relationship between the two schemas, and

• an information processing system (e.g., an EXPRESS-X compiler) can create a data pro-
cessing system that will convert information belonging to one of the schemas (i.e., the
base schema) into information belonging to the other schema (i.e., the view schema).

The first role is considered the more important role. A good EXPRESS-X mapping schema
defines the relationship between two schemas in a way that is simple and easy to understand. If a
particular mapping cannot be described in a straightforward manner in EXPRESS-X, then it may
be represented as a mapping with only a comment in its declaration that describes informally the
mapping that would be defined if sufficient resources existed to produce it.

For example, if a mapping declaration requires a statistical analysis that can only be performed
using advanced numerical techniques, then the body of the declaration may contain only a com-
ment that provides a reference to the algorithm in the literature.

Thi d d i h F M k 4 0 2

EXPRESS-X Reference Manual

5

Conceptually, it is convenient to think of a mapping schema as defining mappings (see section 2.4
below) between a base schema and a view schema. In practise, however, a mapping schema can
define mappings between any set of entity types, independent of the schema or schemas from
which they come. In fact, a mapping schema can reference entity types from many schemas, not
just two. It is also the case that the EXPRESS-X language has no construct to specify which
schema is a base schema and which is a view schema.

The concepts of base schema and view schema will be used throughout the rest of this manual to
simplify the explanation of how the various constructs in the EXPRESS-X language work. In
most examples in the manual two schemas are used, one that plays the role of a base schema and
one that plays the role of a view schema. However, it is important to keep in mind that there are
no physical restrictions on any of the constructs in the EXPRESS-X language with respect to the
schemas on which they operate.

2.3 Materializing a View

As illustrated in Figure 2, an EXPRESS-X specification defines a mapping between a group of
entity types in the base schema and a group of entity types in the view schema. To materialize a
view model (i.e., an instantiation of a view schema) from a base model (i.e., an instantiation of a
base schema), each of the mapping specifications must be applied to the appropriate entity
instances in the base model. This requires applying the mapping to all combinations of base
instances that participate in that mapping.

For example, the top mapping in Figure 2 is defined between three entity types in the base schema
and one in the view schema. To materialize this mapping, it is necessary to consider every combi-
nation of an entity of the first type in the base schema with an entity of the second and third types
in the base schema. For each combination of entities, the predicate in the mapping that defines the
conditions for creation of a view instance must be evaluated. If the predicate evaluates to true, a
new view instance is created.

Once a new view instance is created in the view model, it is necessary to compute values for its
attributes. In many cases, these values can be derived directly from the attribute values of the base
instances from which the view instance is created. In these cases, a simple assignment statement

Base Schema
(Ordinary EXPRESS)

View Schema
(Ordinary EXPRESS)

Mapping Schema
(EXPRESS-X)

Entity Type

Mapping Specification

FIGURE 2. Three Schemas in an EXPRESS-X Specification

EXPRESS-X Reference Manual

6

that defines the derivation computation is all that must be specified for each attribute. In other
cases, however, the computation of a value for an attribute may not be as straightforward. Con-
sider, for example, two view instances that are related in some way, and this relationship is mod-
eled by having one or both of the view instances point to the other. When the first view instance is
created, the second may not yet exist in the view model. If the first view instance is to point to the
second, then the attribute of the first view instance that is to point to the second must remain tem-
porarily uninitialized. Its value must be initialized at a later time once the second view instance
has been created.

2.4 Specification of Mappings

A mapping schema in EXPRESS-X (i.e., a

SCHEMA_MAP

) defines the relationship between two
information models using three types of declarations:

VIEW

,

COMPOSE

 and

MEMBER

. An information
processing system uses these three types of declarations to create data processing functions that
automate mappings between a set of schemas.

2.4.1 VIEW Declaration

A

VIEW

 declaration specifies how to construct a particular entity type. It contains a

FROM

 clause
that identifies the base entity types from which the new entity type is created. It contains a

WHEN

clause that specifies the conditions that must be true for a new instance to be created. And it con-
tains a body that specifies how to compute the values of the attributes for new instances.

Logically, the

FROM

 clause creates an iteration over all combinations of instances for the entity
types it lists. For each combination, the condition in the

WHEN

 clause is evaluated. If true, a new
instance is created.

For example, consider the following declaration:

VIEW v : vdb::ViewEntity
FROM (ba : bdb::BaseA, bb : bdb::BaseB)
WHEN (ba.attr1 > bb.attr2) AND (ba.attr2 > 0));
BEGIN_VIEW

v.v_attr1 := ba.attr1;
v.v_attr2 := bb.attr2;

END_VIEW;

This declaration says that view entities of type

ViewEntity

 are to be created from base entities of
type

BaseA

 and

BaseB

. The identifiers

vdb

 and

bdb

 are used to specify the view schema and the
base schema, respectively, and are defined elsewhere in the mapping schema. The variables

v

,

ba

,
and

bb

 are implicitly declared in this view declaration to represent instances of entity types

Vie-
wEntity

,

BaseA

 and

BaseB

, respectively. The

FROM

 clause sets up an iteration over combinations
of entity instances of type

BaseA

 and

BaseB

 in a base model. The

WHEN

 clause creates a new view
instance only for those combinations in which

attr1

 of the

BaseA

 instance is greater than

attr2

of the

BaseB

 instance and in which

attr2

 of the

BaseA

 instance is greater than zero. The values
for the attributes of a new view instance are copied from the attributes of the base instances.

2.4.2 COMPOSE

Declaration

A

COMPOSE

 declaration can be used in conjunction with a

VIEW

 declaration when it is not possible
to compute the values for all attributes of a view entity type when its instances are first created. As
discussed above, it is sometimes necessary to perform multiple passes to compute the values for
attributes when complex relationships exist between view entity types.

EXPRESS-X Reference Manual

7

A

COMPOSE

 declaration is much like a

VIEW

 declaration except that it iterates over the instances of
an existing entity type. Also, it does not create new instances as a

VIEW

 declaration does; rather it
computes values for attributes of existing instances of an entity type. The syntax is similar to a

VIEW

 declaration except that the word “

COMPOSE

” replaces the word “

VIEW

” and the

FROM

 clause is
optional.

If a

COMPOSE

 declaration contains a

FROM

 clause, then the

FROM

 clause creates an iteration over all
combinations of the instances for the entity types that it lists along with all instances of the entity
type being composed. If no

FROM

 clause is used, then an iteration is created over just the instances
of the entity type being composed. In either case, the

WHEN

 clause restricts when the body of the

COMPOSE

 declaration is applied.

2.4.3 MEMBER Declaration

A

MEMBER

 declaration defines the entity types from a base schema that affect the value of an entity
type in the view schema. In other words, a

MEMBER declaration defines information about the rela-
tionships between two schemas (as do the other three types of declarations).

The MEMBER declaration has several uses in EXPRESS-X. For example, an information processing
system may use a MEMBER declaration to specify when the value of a view entity type should be
recomputed in response to changes in a base model. It may also use a MEMBER declaration to spec-
ify which entity types should be copied from a base model to a view model for a deep copy of an
entity type that is mapped to a view.

A MEMBER declaration may also contain FROM and WHEN clauses. If present, they operate as they do
for the COMPOSE declaration. That is, the FROM clause increases the combinations of instances to
which the body of the MEMBER declaration is applied. The WHEN clause restricts these combinations
to just those that satisfy the conditions imposed in the WHEN clause.

2.5 Conformance Levels

An EXPRESS-X mapping schema defines the relationships between a set of information models
using a combination of VIEW, COMPOSE, and MEMBER declarations. A system using EXPRESS-X
may choose to conform to the specifications using the following conformance classes.

Class 1

A Class 1 system processes only VIEW declarations with a FROM clause that contains a single base
entity type. A system that conforms to this level must allow a user to apply a VIEW declaration to
the instances of any single base entity type in a base schema. The result is the creation of view
entity instances of a single view entity type belonging to a view schema.

Class 2

A Class 2 system processes VIEW, COMPOSE and MEMBER declarations. A system that conforms to
this level must allow a user to apply VIEW and MEMBER declarations to one or more base entity
instances. The result is the creation of one or more view entity instances.

Class 3+

Additional conformance classes are reserved for extensions to be defined during the ISO standard
development process.

EXPRESS-X Reference Manual

8

3 Language Specification Syntax

This section defines the syntax of the EXPRESS-X language using a notation that is similar to the
Wirth Syntax used to define EXPRESS in ISO 10303 Part 11.

The base schema and the view schema are defined using standard EXPRESS and are not dis-
cussed further in detail. The mapping schema, which defines the mappings between the base and
view schemas, is done using the new constructs in the EXPRESS-X language, and is discussed in
detail in this section.

3.1 Basic Language Elements

The basic language elements for EXPRESS-X are similar to those in EXPRESS. An EXPRESS-X
specification is composed of streams of text broken into physical lines composed of characters
and ended by a newline character.

3.2 Character Set

See ISO 10303 Part 11, section 7.1 for details.

3.3 Keywords

The following EXPRESS-X keywords are not part of the EXPRESS language (they may be spec-
ified in upper, lower, or mixed case):

BEGIN_COMPOSE BEGIN_MEMBER BEGIN_VIEW COMPOSE

DECLARE DELETE END_COMPOSE END_GLOBAL

END_MEMBER END_SCHEMA_MAP END_VIEW EXCLUDE

GLOBAL INSTANCE IS MEMBER

NEW SCHEMA_MAP VIEW WHEN

All other keywords in EXPRESS-X are defined as in EXPRESS (see ISO 10303 Part 11, section
7.2 for details).

3.4 Symbols

See ISO 10303 Part 11, section 7.3 for details.

3.5 The Logical Organization of an EXPRESS-X Specification

syntax = schema_decl { schema_decl } .

An EXPRESS-X specification consists of one or more mapping schemas, each of which defines
the required view materialization process for a view of an EXPRESS model.

3.6 Defining Mapping Schemas

schema_decl = SCHEMA_MAP schema_id ‘;’ schema_body END_SCHEMA_MAP ‘;’ .

A mapping schema specification in EXPRESS-X is similar to a schema specification in
EXPRESS.

schema_body = { interface_specification } [constant_decl] { global_decl }

EXPRESS-X Reference Manual

9

 { declaration | rule_decl } .

The specification of the body of a mapping schema in EXPRESS-X has the same form as the
specification of the body of a schema in EXPRESS, with two exceptions. When defining a map-
ping schema, it is necessary to create declarations that define the mappings. As a result,
EXPRESS-X has an expanded set of allowable declarations for use in defining the mapping
schema. It is also necessary in EXPRESS-X to include a global section that identifies the base
schema and the view schema for the mappings.

3.7 Global Declarations in a Mapping Schema

The base and view schemas referenced in a mapping schema are declared in a global section at the
beginning of the mapping schema. These declarations provide a unique name for each base
schema and view schema used in the mapping schema. Among other things, these unique names
are used throughout the mapping schema to qualify entity type names that are shared between
multiple schemas.

global_decl = GLOBAL { schema_instance_decl | instantiation_clause }
 END_GLOBAL ';' .

schema_instance_decl = DECLARE schema_instance_id INSTANCE OF schema_id
 ';' .

schema_instance_id = simple_id .

schema_id = simple_id .

The global section can also include instantiation definitions for instances of the entity types
defined in the base and view schemas. Instances manually instantiated in this way are given
names beginning with the character ‘#’ to distinguish them. The syntax for specifying a manually
instantiated instance is taken from EXPRESS.

instantiation_clause = instance_id '=' entity_constructor ';' .

instance_id = '#' extended_id .

extended_id = [schema_id '::'] simple_id .

entity_constructor = entity_ref '(' [expression { ',' expression}] ')' .

The following is an example of a global declaration in a mapping schema.

GLOBAL

 (* schema instances *)
 DECLARE bdb INSTANCE OF base_schema;
 DECLARE vdb INSTANCE OF view_schema;

 (* manual instantiation
 The following creates two manual instances, 'hh' and 'ww' . These
 instances become part of the view model identified by 'vdb'.
 *)
 #vdb::hh = bdb::MALE('Tony Blurb', 39, #vdb::ww);
 #vdb::ww = bdb::FEMALE('Amanda DeCadanet', 25, #vdb::hh);

EXPRESS-X Reference Manual

10

END_GLOBAL;

3.8 Other Declarations in a Mapping Schema

declaration = entity_decl | function_decl | procedure_decl | type_decl |
 view_decl | compose_decl | member_decl .

Other declarations in a mapping schema are similar to those in EXPRESS, with the addition of the
three new types of declarations for defining mappings (i.e.,

VIEW

 declaration,

COMPOSE

 declara-
tion and

MEMBER

 declaration).

Before going on, it is useful to see an example mapping schema. To show such an example, it is
necessary first to define the base schema and view schema that will be used by the mapping
schema. To do this, consider the following two schemas, one of which is named

Base_Schema

and the other

View_Schema

. Entities in the

View_Schema

 schema will be derived from the entities
in the

Base_Schema

 schema when the view is materialized.

The skeleton of a mapping schema that defines the view materialization process for these two
schemas is shown below. In this mapping schema, a

VIEW

 declaration is used to specify how enti-
ties of type

ViewEntity

 are created from the entity types in the base schema.

SCHEMA_MAP Mapping_Schema;

GLOBAL
DECLARE bdb INSTANCE OF Base_Schema;
DECLARE vdb INSTANCE OF View_Schema;

END_GLOBAL;

VIEW v : vdb::ViewEntity ;
. . .
END_VIEW;

SCHEMA Base_Schema;

ENTITY BaseA;
 int_a1: INTEGER;
 str_a2: STRING;
END_ENTITY;

ENTITY BaseB;
 complex_b1: BaseA;
 str_b2 : STRING;
END_ENTITY;

ENTITY BaseC;
 real_c1: REAL;
 str_c2 : STRING;
END_ENTITY;

END_SCHEMA;

SCHEMA View_Schema;

ENTITY ViewEntity;
 int_v1 : INTEGER;
 real_v2: REAL;
 str_v3 : STRING;
END_ENTITY;

END_SCHEMA;

EXPRESS-X Reference Manual

11

END_SCHEMA_MAP;

The

VIEW

 declaration in the mapping schema above defines the details of the mappings required to
materialize a view of the base schema. The details for specifying these mappings are presented in
the following sections.

3.9 The Logical Organization of a View Mapping Declaration

view_decl = view_head [algorithm_head] { stmt } END_VIEW ';' .

A

VIEW

 declaration specifies how base instances of one or more types are to be mapped to view
instances. A

VIEW

 declaration consists of a header and view statements. The purpose of the view
header is to define the conditions under which a new view instance should be created in a view
model from one or more base instances in a base model. The purpose of the view statements are to
define how the values of the attributes for a newly created view instance are to be computed. The
view declaration can also contain local definitions that will be needed by the view statements (i.e.,

algorithm_head

).

view_head = VIEW general_head from_head when_clause BEGIN_VIEW .

general_head = ((name_id FOR extended_entity_ref) | extended_entity_ref)
 ‘;’ .

name_id = simple_id .

extended_entity_ref = variable_id ':' parameter_type .

A view header begins with the keyword

VIEW

 followed by the name of a view entity type defined
in a view schema. This entity type name can be any valid extended entity reference (see below),
and it defines the type of entity that is created in the view model by this view definition. Option-
ally, the entity type name can be preceded by a unique identifier and the keyword

FOR

. This is
useful to uniquely identify

VIEW

 declarations when more than one declaration is required for the
same entity type.

An extended entity reference names an entity type defined in a schema. It begins with the decla-
ration of a variable name to be used in the mapping declaration to refer to instances of the identi-
fied entity type. The variable name is followed by a colon (i.e., ‘

:

’) and a schema instance name
defined in the global section of the mapping schema. The schema instance name is followed by an
entity type name separated from the schema instance name with two colons (i.e., ‘

::

’). The entity
type name must be declared in the schema identified by the schema instance name.

Examples of extended entity references are shown below:

 b : bdb::BaseEntity ;

 v : vdb::ViewEntity ;

The remainder of the view header contains a

FROM

 clause and a

WHEN

 clause. The former defines
the base entity types in a base schema from which new view instances are to be materialized. The
latter defines the conditions that must be true for the materialization of a view instance to be done.
Both are discussed in detail in the next sections.

EXPRESS-X Reference Manual

12

Inside the view mapping is a sequence of statements that defines how values for the attributes of a
newly created view instance should be computed. These statements are described in a later sec-
tion.

As an example, a complete mapping schema for the example started above is the following:

SCHEMA_MAP Mapping_Schema;

GLOBAL
DECLARE bdb INSTANCE OF Base_Schema;
DECLARE vdb INSTANCE OF View_Schema;

END_GLOBAL;

VIEW v : vdb::ViewEntity ;
FROM (ba : bdb::BaseA, bb : bdb::BaseB, bc : bdb::BaseC)
WHEN ((ba.int_a1 = bb.complex_b1.int_a1) AND
 (NOT (bc.real_c1 > 10.0)));
BEGIN_VIEW
 v.int_v1 := 100;
 v.real_v2 := -bc.real_c1;
 v.str_v3 := 'This is a view object';
END_VIEW;

END_SCHEMA_MAP;

In this example, view instances of type

ViewEntity

 are created from every combination of base
instances of type

BaseA

,

BaseB

, and

BaseC

, for which the

WHEN

 clause is true. The

BEGIN_VIEW

clause defines the computations required to initialize the attributes of the new view entity
instances that are created.

3.10 The FROM Clause

from_head = FROM '(' extended_entity_ref { ',' extended_entity_ref }
 ')' .

The

FROM

 clause defines the base entity types from which a new view instance is to be created and
its attributes initialized. Note that a view instance can be created and its attributes initialized from
many entity types, not just one, by listing multiple base entity types in the

FROM

 clause.

The names of the entity types in the

FROM

 clause are specified as extended entity references, where
each reference identifies a variable name, schema name, and entity type name as defined above.

In the example mapping schema above (i.e.,

Mapping_Schema

), the

FROM

 clause has the form:

FROM (ba : bdb::BaseA, bb : bdb::BaseB, bc : bdb::BaseC)

All three entity types are defined in the base schema (i.e.,

Base_Schema

) and can be referenced
with the variable names

ba

,

bb

, and

bc

, respectively. In this example, the

FROM

 clause means that
the creation of view instances of type

ViewEntity

 will be based on these three types of base enti-
ties in the base schema.

EXPRESS-X Reference Manual

13

Conceptually, the

FROM

 clause of a view definition defines an iteration over the instances of a set
of base entity types. This iteration produces every combination of base instances for the base
entity types listed in the

FROM

 clause. For each combination of base instances, the

WHEN

 clause is
evaluated and, if true, a new view instance is created and its attributes initialized.

For example, the FROM clause above (i.e., FROM (ba : bdb::BaseA, bb : bdb::BaseB, bc :
bdb::BaseC)) creates the following iteration during the materialization process:

for each {ba| ba is an instance of type bdb::BaseA}
for each {bb| bb is an instance of type bdb::BaseB}

for each {bc| bc is an instance of type bdb::BaseC}
begin

evaluate the WHEN clause for (ba, bb, bc)
if the WHEN clause is true

then create a new view instance of type
ViewEntity and initialize its
attributes

end

The scope of the variable in each extended entity reference in a FROM clause is the view declara-
tion containing the FROM clause. The variable name must be unique for each extended entity refer-
ence in a FROM clause. The value of the variable is assigned as part of the iteration created by the
FROM clause.

Note that a VIEW declaration creates a new instance of the view entity type for every combination
of base instances listed in the FROM clause, unless the WHEN clause in the VIEW declaration evalu-
ates to FALSE for a particular combination. There are no other restrictions imposed by a VIEW dec-
laration on creation of new view instances. This means, for example, that if a VIEW declaration is
executed twice, the same set of view instances is created twice. If this behavior is undesired, then
it must be prevented using the WHEN clause for the VIEW declaration.

3.11 The WHEN Clause

when_clause = WHEN domain_rule ‘;’ { domain_rule ';' } .

The WHEN clause of a view declaration defines the conditions under which a new view instance is
created and its attributes initialized. It consists of the keyword WHEN followed by one or more
expressions, separated by semicolons. Each of these expressions is a domain rule as defined in
EXPRESS.

Conceptually, the WHEN clause of a view declaration is evaluated for every combination of entity
instances specified in the FROM clause (or COMPOSE clause, see below). For each combination that
produces a value of TRUE for all the expressions in the WHEN clause, a new view entity is created
and the values of its attributes initialized. The newly created view instance is assigned to the vari-
able specified in the extended entity reference that defines the view entity type created by the view
declaration containing the WHEN clause. This allows statements within the view declaration to
refer to the new view instance (see below).

In the example mapping schema above (i.e., Mapping_Schema), the WHEN clause has the following
form:

VIEW v : vdb::ViewEntity ;
FROM (ba : bdb::BaseA, bb : bdb::BaseB, bc : bdb::BaseC)
WHEN ((ba.int_a1 = bb.complex_b1.int_a1) AND

EXPRESS-X Reference Manual

14

 (NOT (bc.real_c1 > 10.0)));

The expression in the parentheses is evaluated once for each combination of base instances of
type bdb::BaseA, bdb::BaseB, and bdb::BaseC generated by the preceding FROM clause. For
each combination of base instances for which the expression is TRUE, a new view instance of type
ViewEntity is created. This new view instance is used to initialize variable v so that other parts
of the view declaration can refer to the new view instance. Note that in the expression, ba, bb,
and bc function as variables whose current value is defined by the current combination of base
instances produced by the FROM clause iteration.

3.12 The Logical Organization of a Compose Mapping Declaration

Whereas the VIEW declaration defines an iteration over a set of base instances for the purpose of
deriving new view instances from the base instances, the COMPOSE declaration is used to define an
iteration over the view instances of a particular type that have already been created in a view
model. This might be done, for example, to compute relationships between view instances that
could not be computed earlier because not all the related instances had been created yet. Thus, the
COMPOSE declaration is used to set up multiple passes in EXPRESS-X for computing the values of
view instance attributes .

compose_decl = compose_head [algorithm_head] stmt {stmt}
 END_COMPOSE ';' .

The COMPOSE declaration begins with a header, and ends with the keyword END_COMPOSE. In-
between is a series of statements computing the values of attributes for view instances of a partic-
ular type. As in a VIEW declaration, a COMPOSE declaration can contain local definitions that will
be needed by the statements it contains.

compose_head = COMPOSE general_head [from_head] when_clause
 BEGIN_COMPOSE .

general_head = ((name_id FOR extended_entity_ref) | extended_entity_ref)
 ‘;’ .

name_id = simple_id .

The header for a COMPOSE declaration begins with the keyword COMPOSE and is followed by the
name of a view entity type that has already been materialized. This view entity type name is spec-
ified as an extended entity reference (i.e., variable : schema::entity type). This creates an iteration
over all view instances of that type. Like in a VIEW declaration, the view entity type named in the
COMPOSE declaration can be preceded by a unique identifier and the keyword FOR. This provides a
unique identification for the COMPOSE declaration when more than one such declaration is needed
for the same view entity type.

Next in the COMPOSE declaration is an optional FROM clause. If present, this FROM clause augments
the iteration described in the preceding paragraph by combining it with additional nested itera-
tions for all combinations of instances of the entity types listed in the FROM clause. These itera-
tions are similar to those created by the FROM clause in a VIEW declaration.

Next in the COMPOSE declaration header is a WHEN clause that defines the conditions that must be
met by the current combination of entity instances in the iteration to apply the mapping defined in
the rest of the COMPOSE declaration. This WHEN clause is defined exactly as discussed above.

Finally, the COMPOSE declaration header ends with the keyword BEGIN_COMPOSE.

EXPRESS-X Reference Manual

15

Inside the COMPOSE declaration is a sequence of statements that defines how values for the
attributes of a view instance should be computed. These statements are described in a later sec-
tion.

As an example of a COMPOSE declaration, consider the following:

COMPOSE v : vdb::ViewEntity ;
WHEN (v.real_v1 > v.int_v1);
BEGIN_COMPOSE
 v.int_v1 := v.real_v2;
END_COMPOSE;

This COMPOSE declaration creates an iteration over view instances of type ViewEntity. During
each iteration, the variable v is initialized with a different instance of this type.

3.13 Statements in View and Compose Mapping Declarations

The declarations VIEW and COMPOSE are somewhat analogous to the declaration of subprograms in
programming languages. As such, they can contain constant declarations, local variable declara-
tions and sequences of statements that specify the details of a mapping.

EXPRESS-X has sixteen types of statements for use inside VIEW and COMPOSE declarations.
Many of these statement types are taken directly from EXPRESS. Those that are either not in
EXPRESS or are modified from their definition in EXPRESS include: the assignment statement,
the FROM statement, the WHEN statement, the initialize statement, the DELETE statement, and the
instantiation statement.

stmt = alias_stmt | assignment_stmt | case_stmt | compound_stmt
 | delete_stmt | escape_stmt | from_stmt | if_stmt | init_stmt
 | instantiation_stmt | null_stmt | procedure_call_stmt
 | repeat_stmt | return_stmt | skip_stmt | when_stmt .

3.13.1 Enhanced Assignment Statement

assignment_stmt = [coercion] general_ref { qualifier } (':=' | '+=' | '-=')
 expression ‘;’ .

An assignment statement is used to define the computation required to compute the value for an
attribute in a mapping declaration and uses the typical assignment statement format found in pro-
gramming languages such as Pascal and C. It is also similar to the assignment statement in
EXPRESS. On the left of an assignment operator (e.g., ‘:=’) is the name of an entity attribute with
any necessary qualifications (e.g., group or index qualifiers). On the right of the assignment oper-
ator is an expression, the value of which is used to initialize the attribute specified on the left of
the assignment operator.

If the type of the value produced by the expression on the right of the assignment operator has a
simple type (i.e., Number, Integer, Real, Boolean, Logical, String, or Binary), then this value
is used to initialize the attribute specified to the left of the assignment operator. On the other hand,
if the type of the value produced by the expression is not a simple type, then a pointer to the value
is assigned to the attribute specified to the left of the assignment operator.

In addition to the standard assignment operator (i.e., ‘:=’), there are two special versions of it with
the following meanings:

EXPRESS-X Reference Manual

16

A += expression is equivalent to A := A + expression

A -= expression is equivalent to A := A - expression

These special forms of the assignment operator are useful for efficient memory management
when assigning values to attributes that are aggregate types.

Examples of view assignment statements include:

 real_v1 := 100.0 + BaseC\BaseA.int_a1 * 10.0;

 int_v2 := {INTEGER} BaseC.real_c1;

 ent_v3.str_attr := 'This is a view object';

 agg_v4[4] := BaseC.agg_c1[0];

 int_v5 += BaseA.int_b1;

 ent_v6 := {BaseA} BaseB;

 boolean_v7 := person IS man;

Note that examples 2 and 6 illustrate casting in expressions. This is explained in section 3.13.1.4.

3.13.1.1 Coercion in Assignment Statements

coercion = select_coercion | subtype_coercion .

Coercion may be used on the left-hand side of an assignment statement to specify a particular type
that an attribute may take. Single braces are used to specify SELECT coercion and double braces
are used for subtype coercion.

SELECT coercion is used to specify that an attribute that is a SELECT type should be a particular
type from the selection:

select_coercion = '{' (entity_id | type_id) '}' .

entity_id = extended_id ;

type_id = extended_id ;

Example - if an entity geometric_item has an attribute geometry which may be a line, a bezier
curve, or a b-spline curve:

TYPE curve = SELECT(b_spline, bezier, line);
END_TYPE;

ENTITY geometric_item;
geometry : curve;

END_ENTITY;

The target instance for the assignment operation could be coerced into being a line:

EXPRESS-X Reference Manual

17

VIEW v : vdb::geometric_item;
FROM (e : bdb::source_entity)
WHEN TRUE;
BEGIN_VIEW

{line}geometry := e;
END_VIEW;

When an attribute refers to a supertype that may be instantiated as one of many subtypes, subtype
coercion is used.

subtype_coercion = '{{' entity_id '}}' .

Example - the gender of a child.

ENTITY mother;
name : STRING;
age : INTEGER;

 ...
youngest : child;

END_ENTITY;

ENTITY child ABSTRACT SUPERTYPE OF (ONEOF (boy, girl));
name : STRING;
age : INTEGER;

END_ENTITY;

ENTITY boy SUBTYPE OF (child);
 toy : STRING;
END_ENTITY;

ENTITY girl SUBTYPE OF (child);
 doll : STRING;
END_ENTITY;

Then the target instance for the assignment operator could be coerced into either a boy or girl
instance as appropriate:

VIEW m : vdb::mother;
FROM (...)
WHEN ... ;
BEGIN_VIEW

...
IF new_born.sex = 'MALE' THEN

 {{ boy }} youngest .toy := 'Powerful Gun'
ELSE

 {{ girl }} youngest .doll := 'Beautiful Princess'
END_IF;

END_VIEW;

3.13.1.2 Enhancements to Expressions in Assignment Statements

EXPRESS-X extends EXPRESS expressions to introduce the IS keyword, casting, and references
to manually instantiated entity instances.

EXPRESS-X Reference Manual

18

expression = simple_expression [rel_op_extended simple_expression] .

rel_op_extended = rel_op | IN | LIKE | IS .

simple_expression = term { add_like_op term } .

add_like_op = '+' | '-' | OR | XOR .

term = factor { multiplication_like_op factor } .

multiplication_like_op = '*' | '/' | DIV | MOD | AND | '||' .

factor = simple_factor ['**' simple_factor] .

simple_factor = aggregate_initializer | entity_constructor
 | enumeration_reference | interval | query_expression
 | ([unary_op] ('(' expression ')' | primary)) .

primary = literal | ([cast] qualifiable_factor { qualifier }) .

literal = binary_literal | integer_literal | logical_literal
 | real_literal | string_literal .

cast = '{' simple_types | entity_id | type_id '}' .

qualifiable_factor = attribute_ref | constant_factor | function_call
 | general_ref | instance_ref | population .

instance_ref = instance_id .

instance_id = '#' extended_id .

3.13.1.3 The IS Operator

The IS operator in EXPRESS-X is used to determine if a particular instance of an attribute is of a
particular type. It returns a boolean value.

rel_op_extended = rel_op | IN | LIKE | IS .

Example - is a particular instance of entity person also of entity type man?

boolean_v7 := person IS man;

3.13.1.4 Casting in Expressions

Attributes may be cast to a specified data type in an expressions using a cast operator. To do this,
the attribute is preceded by the casting data type in braces. Defined types and entity types are cast
using appropriate VIEW declarations and functions defined elsewhere in the mapping schema.

primary = literal | ([cast] qualifiable_factor { qualifier }) .

cast = '{' simple_types | entity_id | type_id '}' .

EXPRESS-X Reference Manual

19

 Rules and restrictions:

a) Casting to defined data types is only possible if a corresponding function is defined else-
where in the mapping schema.

b) Casting to entity types is only possible if a corresponding VIEW declaration is defined else-
where in the mapping schema, and the FROM clause for this view contains a single entity
type which is the type to be cast (i.e., a conformance class 1 VIEW declaration). Alter-
nately, a function can be defined that specifies the cast.

Example - the entity instance in the attribute source_curve is cast to a bezier_curve entity
instance. A VIEW declaration must exist to carry out the conversion of the source_curve entity
type to a bezier_curve entity type. This VIEW declaration must contain the source_curve
entity type as the only entity type in its FROM clause, and it must be a VIEW declaration that creates
instances of entity type bezier_curve.

target_curve := {bezier_curve} source_curve;

3.13.1.5 Reference to a Manually Instantiated Entity Instance

An expression can reference a previously created entity instance that was manually instantiated in
the GLOBAL section of a mapping schema or using an instantiation statement (see below). This is
done by placing a ‘#’ before the identifier of the manually instantiated instance.

qualifiable_factor = attribute_ref | constant_factor | function_call
 | general_ref | instance_ref | population .

instance_ref = instance_id .

instance_id = '#' extended_id .

3.13.2 FROM Statements

from_stmt = from_head when_clause BEGIN stmt { stmt } END ';' .

The FROM statement defines an iteration process for computing the values for one or more
attributes of a new view instance. It begins with a header that is identical in syntax with the FROM
clause in the header of a VIEW declaration. In this case, however, the FROM clause identifies the
entity instances to use to compute attribute values inside a VIEW or COMPOSE declaration. The FROM
clause is followed by a WHEN clause, which is also identical in syntax with the WHEN clause in the
header of a VIEW declaration.

Logically, the FROM statement creates an iteration for each entity type listed in its header. Each of
these entity types is specified as an extended entity reference (i.e., variable : schema::entity type).
The iterations are nested in the order that the extended entity references are specified from left to
right. This has the effect of executing the WHEN clause for every combination of entity instances
for the entity types listed in the FROM statement header. The variables in the extended entity refer-
ences for these entity types are initialized appropriately for each iteration as discussed for the
FROM clause above.

EXPRESS-X Reference Manual

20

The FROM statement also logically defines a scope that is the scope of the variables in the extended
entity references listed in the FROM statement header. Scopes are nested and a variable name is
resolved using the inner most scope that contains the variable name (as is done in programming
languages like Pascal and C).

An example of a FROM statement is shown below:

FROM (c : sdb::child, w : sdb::woman)
WHEN
 (c IN w.offspring);
BEGIN
 IF (c.sex = 'BOY')
 f.children += {tdb::boy}c;
 ELSE
 f.children += {tdb::girl}c;
 END_IF;
END;

This FROM statement creates an iteration over all combinations of entities of type child and woman
from the sdb schema. For each child instance that is listed as an offspring of the woman instance,
the instance is cast as an instance of entity type boy or girl in the tdb schema and added to the
children aggregate defined in the encompassing scope, which also defines the variable f.

3.13.3 WHEN Statements

when_stmt = when_clause BEGIN stmt {stmt} END ';' .

A WHEN statement in the body of a VIEW or COMPOSE declaration is similar to an IF statement. It
defines the conditions under which other statements should be executed. This is useful, for exam-
ple, when the value to be assigned to an attribute of a view instance is computed differently in var-
ious cases.

The WHEN statement begins with a WHEN clause as defined above for a VIEW declaration header.
This clause is followed by a BEGIN block containing any number of statements. These statements
are executed when the WHEN clause evaluates to TRUE.

As an example of using the WHEN statement in the body of a VIEW declaration, consider the follow-
ing example mapping schema:

SCHEMA_MAP Mapping_Schema;

GLOBAL

 DECLARE bdb INSTANCE OF Base_Schema;
 DECLARE vdb INSTANCE OF View_schema;

END_GLOBAL;

VIEW v : vdb::ViewEntity
FROM (b : bdb::BaseB)
WHEN (b.str_b2 = 'SUPPLIER');
BEGIN_VIEW

 WHEN

EXPRESS-X Reference Manual

21

 (EXISTS(b.complex_b1)
 AND
 (b.complex_b1.int_a1 > 100)
);
 BEGIN

v.int_v1 := b.complex_b1.int_a1;
 END;

 v.str_v2 := BaseB.str_b2;

END_VIEW;

END_SCHEMA_MAP;

In this example, new view instances of type ViewEntity are created in the view model from base
instances of type BaseB in the base model. For each of these new view instances, if the
complex_b1 attribute of the base instance from which it is created exists and has an attribute
int_a1 with a value greater than 100, then this value is used to initialize the int_v1 attribute of
the new view instance. If either of these conditions is false, then the int_v1 attribute of the new
view instance is not initialized. The str_v2 attribute of new view instances is always initialized.

3.13.4 Initialize Statement

init_stmt = NEW general_ref { qualifier } ';' .

Conceptually, the initialize statement is similar to a constructor in the C++ programming lan-
guage. It creates a persistent instance of a non-primitive data type. The statement begins with the
keyword NEW. This keyword is followed by the data type to be created, expressed as a variable
name with any necessary qualifications (e.g., attribute, group or index qualifiers). It is often useful
for initializing aggregates so that items can be added to them in a mapping.

Note that the FROM clause in a VIEW declaration header has an implicit initialize statement in it to
create a new view instance and assign it to the variable that is part of the extended entity reference
that specifies the view entity type for the VIEW declaration.

An example of the initialize statement is the following:

 NEW f.children;

This creates a new empty instance of the children aggregate entity type used above.

3.13.5 DELETE Statement

delete_stmt = delete_instance_stmt .

Conceptually, the DELETE statement is similar to a destructor in object-oriented programming lan-
guages. It deletes a persistent instance of a non-primitive data type. The statement begins with the
keyword DELETE.

delete_instance_stmt = DELETE general_ref {qualifier} ‘;’ .

When deleting an entity instance, the DELETE keyword is followed by the entity instance to be
deleted, expressed as a variable name with any necessary qualifications (e.g., attribute, group or
index qualifiers).

EXPRESS-X Reference Manual

22

An example of the DELETE statement is the following:

DELETE female;

If female is a variable inside the iteration of a FROM statement, for example, then the statement
deletes the instance that is currently bound to this variable.

3.13.6 Instantiation Statement

instantiation_stmt = instantiation_clause .

Entity instances can be manually instantiated in the GLOBAL section of a mapping schema. They
can also be manually instantiated inside VIEW and COMPOSE declarations using an instantiation
statement. The syntax is identical to the syntax used to manually instantiate entity instances in the
GLOBAL section of a mapping schema.

3.14 The Logical Organization of a Member Mapping Declaration

A MEMBER declaration is the final new type of declaration that can appear in a mapping schema. It
is used to identify and logically group a set of attributes from a view entity type. This group helps
to establish a relationship between a base schema and a view schema. Such a logical group of
attributes typically has some practical meaning for the application systems that will use the view
once materialized.

For example, a MEMBER declaration could be used to define a group of all the entity instances
belonging to single assembly within a larger product model. The entity instances in this logical
group can then be treated as an atomic unit when appropriate (e.g., for check-in and check-out
functions). As another example, an information processing system may use the group of attributes
contained in a MEMBER declaration to decide when the values of a view model should be recom-
puted in response to changes in the corresponding base model. A third example of the use of a
MEMBER declaration is to specify which entity instances should be copied from a base model to a
view model to make a deep copy during the view materialization process.

The group of attributes in a MEMBER declaration is given a name and each attribute in the group is
given a label. If one of the attributes in a group references another entity type, then this attribute
represents the root of a tree of entity types. The MEMBER declaration has a clause that prunes the
branches of this tree.

member_decl = member_head BEGIN_MEMBER [include_clause]
 [exclude_clause] END_MEMBER ';' .

member_head = MEMBER general_head [from_head] [when_clause] .

general_head = ((name_id FOR extended_entity_ref) | extended_entity_ref)
 ‘;’ .

name_id = simple_id .

A MEMBER declaration begins with the keyword MEMBER followed by the name of an entity type
specified as an extended entity reference. This entity type contains the attributes that are the roots
for the trees of entities that make up the member group. Optionally, the extended entity reference
can be preceded by the keyword FOR and a name to uniquely identify the MEMBER declaration.

EXPRESS-X Reference Manual

23

Optionally, the MEMBER declaration includes a FROM clause and/or a WHEN clause. As for the COM-
POSE declaration, if a FROM clause is specified, it adds additional nested iterations to the top level
iteration for the entity type containing the root attributes of the member group. The WHEN clause,
if present, identifies the conditions that must be satisfied by a particular combination of entity
instances in order to apply the body of the MEMBER declaration to it.

The specific attributes to be included in the member group are identified by the INCLUDE clause.
The clause lists each attribute to include in the group, gives it a unique label, and specifies the
type of the attribute.

As mentioned above, if one of the included attributes references another view entity type, then
this attribute is the root of a tree of entity types. The branches of this tree are pruned with the
EXCLUDE clause. The clause specifies the path through the tree to the attribute of an entity that is
to be pruned. Each of the paths to an attribute to prune is given a label, and the type of the
attribute to be pruned is specified.

include_clause = INCLUDE member_component { member_component } .

exclude_clause = EXCLUDE member_component { member_component } .

member_component = member_attr_stmt | member_when_stmt;

member_when_stmt = when_clause BEGIN member_component {member_component}
 END ';' .

member_attr_stmt = label ':' parameter_type ':=' (SELF | attribute_ref)
 { qualifier } ';' .

Optionally, a WHEN clause can be used with INCLUDE and EXCLUDE to identify the conditions that
must be true for the INCLUDE or EXCLUDE to be applied.

As an example consider the following MEMBER declaration:

MEMBER assembly_position_mem FOR arm_component_assembly_position ;
BEGIN_MEMBER
INCLUDE
 attr1 : cap_item

 := off;
 attr2 : context_dependent_shape_representation

 := context_dependent_shape_representation_ptr;
EXCLUDE
 WHEN

((SELF.off IS shape_representation_relationship)
 OR
((SELF.off IS representation_relationship_with_transpormation)) ;

 BEGIN
 attr101 : representation
 := off\representation_relationship.rep_1;
 attr102 : representation
 := off\representation_relationship.rep_2;
 attr103 : product_definition_shape
 := context_dependent_shape_representation_ptr.

represented_product_relation;
 END;

EXPRESS-X Reference Manual

24

 WHEN
 (SELF.off IS mapped_item);
 BEGIN
 attr104 : representation
 := off.mapping_source.mapped_representation;
 END;

END_MEMBER;

This MEMBER declaration defines a group of attributes from the view entity type
arm_component_assembly_position. The name of this group is assembly_position_mem.
This group includes two attributes from the arm_component_assembly_position entity type:
off and context_dependent_shape_representation_ptr. The group labels for these
attributes are attr1 and attr2, respectively. The EXCLUDE clause identifies cases where
attributes of the entity types referenced by these two attributes are to be pruned from the group.

3.15 Structure of a Mapping Schema

A typical structure for a mapping schema is to have one or more VIEW mapping declarations (rep-
resenting pass one of the materialization process) in which all view instances are created, fol-
lowed by zero or more COMPOSE mapping declarations that compute values for the uninitialized
attributes in these view instances. At least one COMPOSE mapping declaration is needed for each
view entity type with uninitialized attributes at the end of pass one. After all COMPOSE mapping
declarations, all view instances in a view model are required to be valid. Finally MEMBER declara-
tions, if needed, are placed at the end of a mapping schema. This is illustrated below:

SCHEMA_MAP Mapping_Schema;

GLOBAL

 DECLARE sdb INSTANCE OF source_Schema;
 DECLARE tdb INSTANCE OF target_schema;

END_GLOBAL;

(* Beginning of Pass 1 - Create view instances *)

VIEW v1 : tdb::ViewEntity1 ;
. . .
END_VIEW;

VIEW v2 : tdb::ViewEntity2 ;
. . .
END_VIEW;

. . .

VIEW vn : tdb::ViewEntityn ;
. . .
END_VIEW;

(* Beginning of Pass 2 and later passes - Initialize the *)

EXPRESS-X Reference Manual

25

(* uninitialized attributes in the new view instances *)

COMPOSE v1 : tdb::ViewEntity1 ;
. . .
END_COMPOSE;

COMPOSE v2 : tdb::ViewEntity2 ;
. . .
END_COMPOSE;

. . .

COMPOSE vn : tdb::ViewEntityn ;
. . .
END_COMPOSE;

(* Beginning of definition of attribute groups for *)
(* entity types in the view schema *)

MEMBER membership1 FOR vi : tdb::ViewEntityi ;
. . .
END_MEMBER;

MEMBER membership2 FOR vi : tdb::ViewEntityi ;
. . .
END_MEMBER;

. . .

END_SCHEMA_MAP;

EXPRESS-X Reference Manual

26

Appendix A: EXPRESS-X Example 1

Base Schema

(*
This schema defines the structure of the data stored in the base model.
i.e. entity names, attribute names and types.

The key features are:
Entity person has an attribute data that is either a man or woman entity.
Entity woman has a list of children.
The gender of each child entity is given by the attribute sex which may
 take the value BOY or GIRL.
*)

SCHEMA source;

TYPE m_or_f = SELECT (man, woman);
END_TYPE;

TYPE b_or_g = ENUMERATION OF (BOY, GIRL);
END_TYPE;

ENTITY person;
 social_security_number : STRING (8) fixed
 name : STRING;
 age : REAL;
 data : m_or_f;
END_ENTITY;

ENTITY man;
 car : STRING;
 pocket_contents : wallet;
END_ENTITY;

ENTITY woman;
 offspring : LIST [0:?] OF child;
 handbag_contents : wallet;
END_ENTITY;

ENTITY wallet;
 credit_card : STRING;
 num_twenties : INTEGER;
 num_tens : INTEGER;
 num_fives : INTEGER;
 total_change : REAL;
END_ENTITY;

EXPRESS-X Reference Manual

27

ENTITY child;
 name : STRING;
 age : REAL;
 sex : b_or_g;
END_ENTITY;

END_SCHEMA;

View Schema

(*
This schema defines the structure of data in the view model.

The key features are:
A female entity has a list of dependants, which is an abstract supertype of
 either a boy or girl entity.
*)

SCHEMA target;

ENTITY male;
id : STRING;
age : INTEGER;
vehicle : STRING;
wallet : money_bag;

END_ENTITY;

ENTITY female;
id : STRING;
age : INTEGER;
children : LIST [0:?] OF dependant;
purse : money_bag;

END_ENTITY;

ENTITY dependant ABSTRACT SUPERTYPE OF (ONEOF (boy, girl));
age : INTEGER;
name : STRING;

END_ENTITY;

ENTITY money_bag;
plastic : STRING;
total_cash : REAL;

END_ENTITY;

ENTITY boy SUBTYPE OF (dependant);
END_ENTITY;

ENTITY girl SUBTYPE OF (dependant);
END_ENTITY;

END_SCHEMA;

EXPRESS-X Reference Manual

28

Mapping Schema

(*** Mapping_Schema ***)
SCHEMA_MAP Mapping_Schema;

GLOBAL
 DECLARE sdb INSTANCE OF source; (*** instance of base schema ***)
 DECLARE tdb INSTANCE OF target; (*** instance of view schema ***)
END_GLOBAL;

(*** male view scope ***)

VIEW l : tdb::male ;
FROM (m : sdb::man)
WHEN TRUE;
BEGIN_VIEW

 FROM (p : sdb::person)
 WHEN
 ((p.data IS sdb::man)
 AND
 (p.data = m));
 BEGIN
 id := p.social_security_number;
 END;

 vehicle := m.car;

 NEW l.wallet;
 wallet.plastic := m.pocket_contents.credit_card;
 wallet.total_cash := m.pocket_contents.num_twenties * 20.0 +
 m.pocket_contents.num_tens * 10.0 +
 m.pocket_contents.num_fives * 5.0 +
 m.pocket_contents.total_change;

END_VIEW;

END_SCHEMA_MAP;

EXPRESS-X Reference Manual

29

Appendix B: EXPRESS-X Example 2

Base Schema

Same as in Example 1 in Appendix A.

View Schema

Same as in Example 1 in Appendix A.

Mapping Schema

SCHEMA_MAP Mapping_Schema2;

GLOBAL
 DECLARE sdb INSTANCE OF source; (*** instance of base schema ***)
 DECLARE tdb INSTANCE OF target; (*** instance of view schema ***)

 #tdb::extra_child = tdb::boy(2, 'Tony Blurb');
END_GLOBAL;

VIEW b : tdb::boy ;
FROM (c : sdb::child)
WHEN
 (c.sex = ‘BOY’) ;
BEGIN_VIEW
 age := {INTEGER} child.age;
 name := child.name;
END_VIEW;

VIEW g : tdb::girl ;
FROM (c : sdb::child)
WHEN
 (c.sex = ‘GIRL’) ;
BEGIN_VIEW
 age := {INTEGER} child.age;
 name := child.name;
END_VIEW;

VIEW f : tdb::female ;
FROM (w : sdb::woman)
WHEN TRUE;
BEGIN_VIEW

 FROM (p : sdb::person)
 WHEN

EXPRESS-X Reference Manual

30

 ((p.data IS sdb::woman)
 AND
 (p.data = w));
 BEGIN
 id := p.social_security_number;
 END;

 NEW f.children;

 FROM (c : sdb::child)
 WHEN
 (c IN w.offspring) ;
 BEGIN
 IF (c.sex = 'BOY') THEN
 children += {tdb::boy}child;
 ELSE
 children += {tdb::girl}child;
 END_IF;
 END;

 children += #extra_child;

 NEW f.purse;
 purse.plastic := w.handbag_contents.credit_card;
 purse.total_cash := w.handbag_contents.num_twenties * 20.0 +
 w.handbag_contents.num_tens * 10.0 +
 w.handbag_contents.num_fives * 5.0 +
 w.handbag_contents.total_change;

END_VIEW;

END_SCHEMA_MAP;

EXPRESS-X Reference Manual

31

Appendix C: EXPRESS-X Example 3

Base Schema

(*
EXPRESS schema defining Base Model
*)

SCHEMA source_schema;

ENTITY family;
family_name: STRING;
members: LIST [1:?] OF person;

END_ENTITY;

ENTITY person
 ABSTRACT SUPERTYPE OF (ONEOF(man, woman, child));
 name : STRING;
 age : INTEGER;
END_ENTITY;

ENTITY man
 SUBTYPE OF (person);
 car : STRING;
 pocket_contents : wallet;
END_ENTITY;

ENTITY woman
 SUBTYPE OF (person);
 handbag_contents : wallet;
END_ENTITY;

ENTITY wallet;
 credit_card : STRING;
 num_twenties : INTEGER;
 num_tens : INTEGER;
 num_fives : INTEGER;
 total_change : REAL;
END_ENTITY;

ENTITY child
 SUBTYPE OF (person);
END_ENTITY;

END_SCHEMA;

EXPRESS-X Reference Manual

32

View Schema

(*
EXPRESS schema defining View Model
*)

SCHEMA target_schema;

ENTITY family_member
 ABSTRACT SUPERTYPE OF (ONEOF(husband, wife, dependant));

family_id : STRING;
name : STRING;
age : INTEGER;

END_ENTITY;

ENTITY husband
 SUBTYPE OF (family_member);

wife_is : wife;
children : LIST[0:?] OF dependant;
vehicle : STRING;
wallet : money_bag;

END_ENTITY;

ENTITY wife
 SUBTYPE OF (family_member);

husband_is : husband;
children : LIST[0:?] OF dependant;
purse : money_bag;

END_ENTITY;

ENTITY dependant
 SUBTYPE OF (family_member);

father_is : husband;
mother_is: wife;
siblings : LIST[0:?] OF dependant;

END_ENTITY;

ENTITY money_bag;
plastic : STRING;
total_cash : REAL;

END_ENTITY;

END_SCHEMA;

EXPRESS-X Reference Manual

33

Mapping Example

SCHEMA_MAP mapping_schema;

GLOBAL
 DECLARE sdb INSTANCE OF source_schema; (*** instance of base schema ***)
 DECLARE tdb INSTANCE OF target_target; (*** instance of view schema ***)
END_GLOBAL;

VIEW h : tdb::husband ;
FROM (f : sdb::family, m : sdb::man)
WHEN
 (m IN f.members);
BEGIN_VIEW

 family_id := 'Family_of_' + f.family_name;
 name := m.name;
 age := m.age;
 vehicle := m.car;

 NEW h.wallet;
 wallet.plastic := m.pocket_contents.credit_card;
 wallet.total_cash := m.pocket_contents.num_twenties * 20.0 +
 m.pocket_contents.num_tens * 10.0 +
 m.pocket_contents.num_fives * 5.0 +
 m.pocket_contents.total_change;

END_VIEW;

VIEW wife : tdb::wife ;
FROM (f : sdb::family, w : sdb::woman)
WHEN
 (w IN f.members);
BEGIN_VIEW

 family_id := 'Family_of_' + f.family_name;
 name := w.name;
 age := w.age;

 NEW wife.purse;
 purse.plastic := w.handbag_contents.credit_card;
 purse.total_cash := w.handbag_contents.num_twenties * 20.0 +
 w.handbag_contents.num_tens * 10.0 +
 w.handbag_contents.num_fives * 5.0 +
 w.handbag_contents.total_change;

END_VIEW;

VIEW d : tdb::dependant ;
FROM (f : sdb::family, c : sdb::child)
WHEN
 (c IN f.members);

EXPRESS-X Reference Manual

34

BEGIN_VIEW

 family_id := 'Family_of_' + f.family_name;
 name := c.name;
 age := c.age;

END_VIEW;

COMPOSE h : tdb::husband ;
WHEN TRUE;
BEGIN_COMPOSE

 FROM (w : tdb::wife)
 WHEN
 (h.family_id = w.family_id);
 BEGIN

 wife_is := w;

 END;

 NEW h.children;
 FROM (d : tdb::dependant)
 WHEN
 (h.family_id = d.family_id);
 BEGIN

 children += d;

 END;

END_COMPOSE;

COMPOSE w : tdb::wife ;
WHEN TRUE;
BEGIN_COMPOSE

 FROM (h : tdb::husband)
 WHEN
 (w.family_id = h.family_id);
 BEGIN

 husband_is := h;

 END;

 NEW w.children;
 FROM (d : tdb::dependant)
 WHEN
 (w.family_id = d.family_id);
 BEGIN

 children += d;

EXPRESS-X Reference Manual

35

 END;

END_COMPOSE;

COMPOSE d : tdb::dependant ;
WHEN TRUE;
BEGIN_COMPOSE

 FROM (h : tdb::husband)
 WHEN
 (h.family_id = d.family_id);
 BEGIN

 father_is := h;

 END;

 FROM (w : tdb::wife)
 WHEN
 (w.family_id = d.family_id);
 BEGIN

 mother_is := w;

 END;

 NEW d.siblings;
 FROM (d1 : tdb::dependant)
 WHEN
 (d1.family_id = d.family_id)
 AND
 NOT (d1 = d);
 BEGIN

 siblings += d1;

 END;

END_COMPOSE;

END_SCHEMA_MAP;

EXPRESS-X Reference Manual

36

Appendix D: EXPRESS-X Example 4

Base Schema

SCHEMA config_control_design; (* AP203 AIM Schema *)

...

END_SCHEMA;

View Schema

SCHEMA ap203_arm_schema; (* AP203 ARM Schema *)

...

ENTITY arm_part;

(* POINTERS INTO THE AIM *)
 off : product;

 product_category_relationship_ptr : product_category_relationship;
 product_related_product_category_ptr : product_related_product_category;

(* USER DEFINED ATTRIBUTES *)
 arm_key : STRING;
 arm_user_name : STRING;
 arm_product_description : STRING;
 arm_part_nomenclature : STRING;
 arm_part_number : STRING;
 arm_standard_part_indicator : STRING;
 arm_part_type : STRING;

(* RELATIONSHIPS TO OTHER ARM OBJECTS *)
 arm_to_alternate_part : LIST [0:?] OF arm_part;
 arm_is_alternate_part_for : LIST [0:?] OF arm_part;
 arm_to_part_version : LIST [1:?] OF arm_part_version;

(* POINTERS FROM OTHER arm OBJECTS *)
 arm_to_person : arm_person;
 arm_to_application_context : LIST [0:?] OF arm_application_context;

UNIQUE
 UR1 : arm_key;

END_ENTITY;

...
END_SCHEMA;

EXPRESS-X Reference Manual

37

Mapping Schema

SCHEMA_MAP AP203_aim2arm_mapping_schema;(* AP203 AIM To ARM Mapping *)

GLOBAL
 DECLARE aim_db INSTANCE OF config_control_design;
 DECLARE arm_db INSTANCE OF ap203_arm_schema;
END_GLOBAL;

VIEW np : arm_db::arm_part ;
FROM (p : aim_db::product)
WHEN TRUE;
BEGIN_VIEW

 off := p;
 arm_product_description := p.description;

 FROM (prpc : aim_db::product_related_product_category)
 WHEN (p IN prpc.products);
 BEGIN
 arm_part_type := NVL(prpc.name, '') + ' - ' +
 NVL(prpc.description, '');
 product_related_product_category_ptr := prpc;
 WHEN (prpc\product_category.name = 'standard_part');
 BEGIN
 arm_standard_part_indicator
 := NVL(prpc\product_category.name, '') + ' - ' +
 NVL(prpc\product_category.description, '');
 END;
 END;

 FROM (prpc : aim_db::product_related_product_category,
 pcr : aim_db::product_category_relationship)
 WHEN

(p IN prpc.products)
AND
(prpc\product_category
 = pcr.sub_category);

 BEGIN
product_category_relationship_ptr := pcr;

 END;

 arm_part_nomenclature := p.name;

 arm_part_number := p.id;

END_VIEW;

COMPOSE np : arm_db::arm_part ;
WHEN TRUE;
BEGIN_COMPOSE

EXPRESS-X Reference Manual

38

 NEW np.arm_to_application_context;
 FROM (nac : arm_db::arm_application_context,

pc : aim_db::product_context)
 WHEN

(pc IN np.off.frame_of_reference)
AND
(pc\application_context_element.frame_of_reference
 = nac.off);

 BEGIN
arm_to_application_context += nac;

 END;

 NEW np.arm_to_alternate_part;
 FROM (nap : arm_db::arm_alternate_part)
 WHEN

(nap.off.base
 = np.off);
 BEGIN
 arm_to_alternate_part += np;
 END;

 NEW np.arm_is_alternate_part_for;
 FROM (nap : arm_db::arm_alternate_part)
 WHEN

(nap.off.alternate
 = np.off);
 BEGIN
 arm_is_alternate_part_for += np;
 END;

 NEW np.arm_to_part_version;
 FROM (npv : arm_db::arm_part_version)
 WHEN (npv.off\product_definition_formation.of_product = np.off);
 BEGIN
 arm_to_part_version += arm_part_version;
 END;

 FROM (arm_person : arm_db::arm_person)
 WHEN

EXISTS(arm_person.arm_to_person_item)
AND
(np IN arm_person.arm_to_person_item);

 BEGIN
arm_to_person := arm_person;

 END;

 arm_key := NVL(np.arm_part_number, 'NO VALUE GIVEN');

 arm_user_name := NVL(np.off.name, 'NO VALUE GIVEN');

END_COMPOSE;

EXPRESS-X Reference Manual

39

MEMBER part_membership FOR p : arm_db::arm_part ;
BEGIN_MEMBER
INCLUDE
 attr1 : product

:= off;
 attr2 : product_related_product_category

:= product_related_product_category_ptr;
 attr3 : product_category_relationship

:= product_category_relationship_ptr;
EXCLUDE
 attr101 : SET [1:?] OF product_context

:= off.frame_of_reference;
 attr102 : SET [1:?] OF product

:= product_related_product_category_ptr.products;
 attr103 : product_category

:= product_category_relationship_ptr.category;
END_MEMBER;

END_SCHEMA_MAP; (* End Of ap203_aim2arm_mapping_schema *)

EXPRESS-X Reference Manual

40

Appendix E: EXPRESS-X Example 5

Base Schema

Same as in Example 1 in Appendix A.

View Schema

Same as in Example 1 in Appendix A.

Mapping Schema

Same as in Example 1 in Appendix A.

Updating Schema

(* This example shows how to propagate the updates in view model back
 to the source model
*)

(*** Updating_Schema ***)
SCHEMA_MAP Updating_Schema;

GLOBAL
 DECLARE sdb INSTANCE OF source; (*** instance of base schema ***)
 DECLARE tdb INSTANCE OF target; (*** instance of view schema ***)
END_GLOBAL;

(*** male update scope ***)

COMPOSE tm : tdb::male ;
WHEN TRUE;
BEGIN_COMPOSE

 FROM (p : sdb::person, m : sdb::man)
 WHEN
 ((p.social_security_number = tm.id)
 AND
 (p.data IS sdb::man)
 AND
 (p.data = m));
 BEGIN
 p.social_security_number := tm.id;
 m.car := tm.vehicle;

EXPRESS-X Reference Manual

41

 m.pocket_contents.credit_card := tm.wallet.plastic;

 (* Notice that the following values can not be uniquely decided.
 The following only shows one possible solution.
 *)

 m.pocket_contents.num_twenties := tm.wallet.total_cash / 20;
 m.pocket_contents.num_tens
 := (tm.wallet.total_cash-20 * m.pocket_contents.num_twenties) / 10;
 m.pocket_contents.num_fives
 := (tm.wallet.total_cash - 20 * m.pocket_contents.num_twenties
 - 10 * m.pocket_contents.num_tens) / 5 ;
 m.pocket_contents.total_change
 := tm.wallet.total_cash - 20 * m.pocket_contents.num_twenties
 - 10 * m.pocket_contents.num_tens
 - 5 * m.pocket_contents.num_fives ;

 END;

END_COMPOSE;

END_SCHEMA_MAP;

EXPRESS-X Reference Manual

42

Appendix F: EXPRESS Language Syntax

F.1 Tokens

F.1.1 Keywords

 0 | ABS = 'abs' .
 1 | ABSTRACT = 'abstract' .
 2 | ACOS = 'acos' .
 3 | AGGREGATE = 'aggregate' .
 4 | ALIAS = 'alias' .
 5 | AND = 'and' .
 6 | ANDOR = 'andor' .
 7 | ARRAY = 'array' .
 8 | AS = 'as' .
 9 | ASIN = 'asin' .

 10 | ATAN = 'atan' .
 11 | BAG = 'bag' .
 12 | BEGIN = 'begin' .
 13 | BINARY = 'binary' .
 14 | BLENGTH = 'blength' .
 15 | BOOLEAN = 'boolean' .
 16 | BY = 'by' .
 17 | CASE = 'case' .
 18 | CONSTANT = 'constant' .
 19 | CONST_E = 'const_e' .

 20 | CONTEXT = 'context' .
 21 | COS = 'cos' .
 22 | DERIVE = 'derive' .
 23 | DIV = 'div' .
 24 | ELSE = 'else' .
 25 | END = 'end' .
 26 | END_ALIAS = 'end_alias' .
 27 | END_CASE = 'end_case' .
 28 | END_CONSTANT = 'end_constant' .
 29 | END_CONTEXT = 'end_context' .

 30 | END_ENTITY = 'end_entity' .
 31 | END_FUNCTION = 'end_function' .
 32 | END_IF = 'end_if' .
 33 | END_LOCAL = 'end_local' .
 34 | END_MODEL = 'end_model' .
 35 | END_PROCEDURE = 'end_procedure' .
 36 | END_REPEAT = 'end_repeat' .
 37 | END_RULE = 'end_rule' .
 38 | END_SCHEMA = 'end_schema' .
 39 | END_TYPE = 'end_type' .

 40 | ENTITY = 'entity' .
 41 | ENUMERATION = 'enumeration' .

EXPRESS-X Reference Manual

43

 42 | ESCAPE = 'escape' .
 43 | EXISTS = 'exists' .
 44 | EXP = 'exp' .
 45 | FALSE = 'false' .
 46 | FIXED = 'fixed' .
 47 | FOR = 'for' .
 48 | FORMAT = 'format' .
 49 | FROM = 'from' .

 50 | FUNCTION = 'function' .
 51 | GENERIC = 'generic' .
 52 | HIBOUND = 'hibound' .
 53 | HIINDEX = 'hiindex' .
 54 | IF = 'if' .
 55 | IN = 'in' .
 56 | INSERT = 'insert' .
 57 | INTEGER = 'integer' .
 58 | INVERSE = 'inverse' .
 59 | LENGTH = 'length' .

 60 | LIKE = 'like' .
 61 | LIST = 'list' .
 62 | LOBOUND = 'lobound' .
 63 | LOINDEX = 'loindex' .
 64 | LOCAL = 'local' .
 65 | LOG = 'log' .
 66 | LOG10 = 'log10' .
 67 | LOG2 = 'log2' .
 68 | LOGICAL = 'logical' .
 69 | MOD = 'mod' .

 70 | MODEL = 'model' .
 71 | NOT = 'not' .
 72 | NUMBER = 'number' .
 73 | NVL = 'nvl' .
 74 | ODD = 'odd' .
 75 | OF = 'of' .
 76 | ONEOF = 'oneof' .
 77 | OPTIONAL = 'optional' .
 78 | OR = 'or' .
 79 | OTHERWISE = 'otherwise' .

 80 | PI = 'pi' .
 81 | PROCEDURE = 'procedure' .
 82 | QUERY = 'query' .
 83 | REAL = 'real' .
 84 | REFERENCE = 'reference' .
 85 | REMOVE = 'remove' .
 86 | REPEAT = 'repeat' .
 87 | RETURN = 'return' .
 88 | ROLESOF = 'rolesof' .
 89 | RULE = 'rule' .

 90 | SCHEMA = 'schema' .

EXPRESS-X Reference Manual

44

 91 | SELECT = 'select' .
 92 | SELF = 'self' .
 93 | SET = 'set' .
 94 | SIN = 'sin' .
 95 | SIZEOF = 'sizeof' .
 96 | SKIP = 'skip' .
 97 | SQRT = 'sqrt' .
 98 | STRING = 'string' .
 99 | SUBTYPE = 'subtype' .

 100 | SUPERTYPE = 'supertype' .
 101 | TAN = 'tan' .
 102 | THEN = 'then' .
 103 | TO = 'to' .
 104 | TRUE = 'true' .
 105 | TYPE = 'type' .
 106 | TYPEOF = 'typeof' .
 107 | UNIQUE = 'unique' .
 108 | UNKNOWN = 'unknown' .
 109 | UNTIL = 'until' .

 110 | USE = 'use' .
 111 | USEDIN = 'usedin' .
 112 | VALUE = 'value' .
 113 | VALUE_IN = 'value_in' .
 114 | VALUE_UNIQUE = 'value_unique' .
 115 | VAR = 'var' .
 116 | WHERE = 'where' .
 117 | WHILE = 'while' .
 118 | XOR = 'xor' .

F.1.2 Character classes

 119 | bit = '0' | '1' .

 120 | digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' .
 121 | digits = digit { digit } .
 122 | encoded_character = octet octet octet octet.
 123 | hex_digit = digit | 'a' | 'b' | 'c' | 'd' | 'e' | 'f' .
 124 | letter = 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'i' | 'j' |
 'k' | 'l' | 'm' | 'n' | 'o' | 'p' | 'q' | 'r' | 's' | 't' |
 'u' | 'v' | 'w' | 'x' | 'y' | 'z' .
 125 | lparen_not_star = '(' not_star .
 126 | not_lparen_star = not_paren_star | ')' .
 127 | not_paren_star = letter | digit | not_paren_star_special .
 128 | not_paren_star_quote_special = '!' | '"' | '#' | '$' | '%' | '&' |
 '+' | ',' | '-' | '.' | '/' | ':' |
 ';' | '<' | '=' | '>' | '?' | '@' |
 '[' | '\' | ']' | '^' | '_' | '`' |
 '{' | '|' | '}' | '~' .
 129 | not_paren_star_special = not_paren_star_quote_special | '''' .

EXPRESS-X Reference Manual

45

 130 | not_quote = not_paren_star_quote_special | letter | digit | '(' |
 ')' | '*' .
 131 | not_rparen = not_paren_star | '*' | '(' .
 132 | not_star = not_paren_star | '(' | ')' .
 133 | octet = hex_digit hex_digit .
 134 | special = not_paren_star_quote_special | '(' | ')' | '*' | '''' .
 135 | star_not_rparen = '*' not_rparen .

F.1.3 Lexical Elements

 136 | binary_literal = '%' bit { bit } .
 137 | encoded_string_literal = '"' encoded_character { encoded_character }
 '"' .
 138 | integer_literal = digits .
 139 | real_literal = digits '.' [digits] ['e' [sign] digits] .

 140 | simple_id = letter { letter | digit | '_' } .
 141 | simple_string_literal = \q { (\q \q) | not_quote | \s | \o } \q .

F.1.4 Remarks

 142 | embedded_remark = '(*' { not_lparen_star | lparen_not_star |
 star_not_rparen | embedded_remark } '*)' .
 143 | remark = embedded_remark | tail_remark .
 144 | tail_remark = '--' { \a | \s | \o } \n .

F.1.5 Interpreted Identifiers

 145 | attribute_ref = attribute_id .
 146 | constant_ref = constant_id .
 147 | entity_ref = entity_id .
 148 | enumeration_ref = enumeration_id .
 149 | function_ref = function_id .

 150 | parameter_ref = parameter_id .
 151 | procedure_ref = procedure_id .
 152 | schema_ref = schema_id .
 153 | type_label_ref = type_label_id .
 154 | type_ref = type_id .
 155 | variable_ref = variable_id .

F.2 Grammar Rules

 156 | abstract_supertype_declaration = ABSTRACT SUPERTYPE
 [subtype_constraint] .
 157 | actual_parameter_list = '(' parameter { ',' parameter } ')' .

EXPRESS-X Reference Manual

46

 158 | add_like_op = '+' | '-' | OR | XOR .
 159 | aggregate_initializer = '[' [element { ',' element }] ']' .

 160 | aggregate_source = simple_expression .
 161 | aggregate_type = AGGREGATE [':' type_label] OF parameter_type .
 162 | aggregation_types = array_type | bag_type | list_type | set_type .
 163 | algorithm_head = { declaration } [constant_decl] [local_decl] .
 164 | alias_stmt = ALIAS variable_id FOR general_ref { qualifier } ';'
 stmt { stmt } END_ALIAS ';' .
 165 | array_type = ARRAY '[' bound_spec ']' OF [OPTIONAL] [UNIQUE]
 base_type .
 166 | assignment_stmt = general_ref { qualifier } ':=' expression ';' .
 167 | attribute_decl = attribute_id | qualified_attribute .
 168 | attribute_id = simple_id .
 169 | attribute_qualifier = '.' attribute_ref .

 170 | bag_type = BAG [bound_spec] OF base_type .
 171 | base_type = aggregation_types | simple_types | named_types .
 172 | binary_type = BINARY [width_spec] .
 173 | boolean_type = BOOLEAN .
 174 | bound_1 = numeric_expression .
 175 | bound_2 = numeric_expression .
 176 | bound_spec = '[' bound_1 ':' bound_2 ']' .
 177 | built_in_constant = CONST_E | PI | SELF | '?' .
 178 | built_in_function = ABS | ACOS | ASIN | ATAN | BLENGTH | COS |
 EXISTS | EXP | FORMAT | HIBOUND | HIINDEX |
 LENGTH | LOBOUND | LOINDEX | LOG | LOG2 |
 LOG10 | NVL | ODD | ROLESOF | SIN |SIZEOF |
 SQRT | TAN | TYPEOF | USEDIN | VALUE | VALUE_IN |
 VALUE_UNIQUE .
 179 | built_in_procedure = INSERT | REMOVE .

 180 | case_action = case_label { ',' case_label } ':' stmt .
 181 | case_label = expression .
 182 | case_stmt = CASE selector OF { case_action } [OTHERWISE ':' stmt]
 END_CASE ';' .
 183 | compound_stmt = BEGIN stmt { stmt } END ';' .
 184 | constant_body = constant_id ':' base_type ':=' expression ';' .
 185 | constant_decl = CONSTANT constant_body { constant_body }

 END_CONSTANT ';' .
 186 | constant_factor = built_in_constant | constant_ref .
 187 | constant_id = simple_id .
 188 | constructed_types = enumeration_type | select_type .
 189 | declaration = entity_decl | function_decl | procedure_decl |
 type_decl .

 190 | derived_attr = attribute_decl ':' base_type ':=' expression ';' .
 191 | derive_clause = DERIVE derived_attr { derived_attr } .
 192 | domain_rule = [label ':'] expression.
 193 | element = expression [':' repetition] .
 194 | entity_body = { explicit_attr } [derive_clause] [inverse_clause]
 [unique_clause] [where_clause] .
 195 | entity_constructor = entity_ref '(' [expression { ',' expression}]

EXPRESS-X Reference Manual

47

 ')' .
 196 | entity_decl = entity_head entity_body END_ENTITY;
 197 | entity_head = ENTITY entity_id [subsuper] ';' .
 198 | entity_id = simple_id .
 199 | enumeration_id = simple_id .

 200 | enumeration_reference = [type_ref '.'] enumeration_ref .
 201 | enumeration_type = ENUMERATION OF '(' enumeration_id
 { ',' enumeration_id } ')' .
 202 | escape_stmt = ESCAPE ';' .
 203 | explicit_attr = attribute_decl { ',' attribute_decl } ':' [OPTIONAL]
 base_type ';' .
 204 | expression = simple_expression [rel_op_extended simple_expression] .
 205 | factor = simple_factor ['**' simple_factor] .
 206 | formal_parameter = parameter_id { ',' parameter_id } ':'
 parameter_type .
 207 | function_call = (built_in_function | function_ref)
 [actual_parameter_list] .
 208 | function_decl = function_head [algorithm_head] stmt { stmt }
 END_FUNCTION ';' .
 209 | function_head = FUNCTION function_id ['(' formal_parameter
 { ';' formal_parameter } ')'] ':' parameter_type

 ';' .

 210 | function_id = simple_id .
 211 | generalized_types = aggregate_type | general_aggregation_types |
 generic_type .
 212 | general_aggregation_types = general_array_type | general_bag_type |
 general_list_type | general_set_type .
 213 | general_array_type = ARRAY [bound_spec] OF [OPTIONAL] [UNIQUE]
 parameter_type .
 214 | general_bag_type = BAG [bound_spec] OF parameter_type .
 215 | general_list_type = LIST [bound_spec] OF [UNIQUE]

parameter_type.
 216 | general_ref = parameter_ref | variable_ref .
 217 | general_set_type = SET [bound_spec] OF parameter_type .
 218 | generic_type = GENERIC [':' type_label] .
 219 | group_qualifier = '\' entity_ref .

 220 | if_stmt = IF expression THEN stmt { stmt } [ELSE stmt { stmt }]
 END_IF ';' .
 221 | increment = numeric_expression .
 222 | increment_control = variable_id ':=' bound_1 TO bound_2 [BY
 increment] .
 223 | index = numeric_expression .
 224 | index_1 = index .
 225 | index_2 = index .
 226 | index_qualifier = '[' index_1 [':' index_2] ']' .
 227 | integer_type = INTEGER .
 228 | interface_specification = reference_clause | use_clause .
 229 | interval = '{' interval_low interval_op interval_item interval_op
 interval_high '}' .

 230 | interval_high = simple_expression .

EXPRESS-X Reference Manual

48

 231 | interval_item = simple_expression .
 232 | interval_low = simple_expression .
 233 | interval_op = '<' | '<=' .
 234 | inverse_attr = attribute_decl ':' [(SET | BAG) [bound_spec] OF]
 entity_ref FOR attribute_ref ';' .
 235 | inverse_clause = INVERSE inverse_attr { inverse_attr } .
 236 | label = simple_id .
 237 | list_type = LIST [bound_spec] OF [UNIQUE] base_type .
 238 | literal = binary_literal | integer_literal | logical_literal |
 real_literal | string_literal .
 239 | local_decl = LOCAL local_variable { local_variable } END_LOCAL ';' .

 240 | local_variable = variable_id { ',' variable_id } ':' parameter_type
 [':=' expression] ';' .
 241 | logical_expression = expression .
 242 | logical_literal = FALSE | TRUE | UNKNOWN .
 243 | logical_type = LOGICAL .
 244 | multiplication_like_op = '*' | '/' | DIV | MOD | AND | '||' .
 245 | named_types = entity_ref | type_ref .
 246 | named_type_or_rename = named_types [AS (entity_id | type_id)] .
 247 | null_stmt = ';' .
 248 | number_type = NUMBER .
 249 | numeric_expression = simple_expression .

 250 | one_of = ONEOF '(' supertype_expression { ',' supertype_expression }
 ')' .
 251 | parameter = expression .
 252 | parameter_id = simple_id .
 253 | parameter_type = generalized_types | named_types | simple_types .
 254 | population = entity_ref .
 255 | precision_spec = numeric_expression .
 256 | primary = literal | (qualifiable_factor { qualifier }) .
 257 | procedure_call_stmt = (built_in_procedure | procedure_ref)
 [actual_parameter_list] ';' .
 258 | procedure_decl = procedure_head [algorithm_head] { stmt }
 END_PROCEDURE ';' .
 259 | procedure_head = PROCEDURE procedure_id ['(' [VAR] formal_parameter
 { ';' [VAR] formal_parameter } ')'] ';' .

 260 | procedure_id = simple_id .
 261 | qualifiable_factor = attribute_ref | constant_factor | function_call

 | general_ref | population.
 262 | qualified_attribute = SELF group_qualifier attribute_qualifier .
 263 | qualifier = attribute_qualifier | group_qualifier

 | index_qualifier .
 264 | query_expression = QUERY '(' variable_id '<*' aggregate_source '|'
 logical_expression ')' .
 265 | real_type = REAL ['(' precision_spec ')'] .
 266 | referenced_attribute = attribute_ref | qualified_attribute .
 267 | reference_clause = REFERENCE FROM schema_ref ['(' resource_or_rename
 { ',' resource_or_rename } ')'] ';' .
 268 | rel_op = '<' | '>' | '<=' | '>=' | '<>' | '=' | ':<>:' | ':=:' .
 269 | rel_op_extended = rel_op | IN | LIKE .

EXPRESS-X Reference Manual

49

 270 | rename_id = constant_id | entity_id | function_id | procedure_id |
 type_id .
 271 | repeat_control = [increment_control] [while_control]
 [until_control] .
 272 | repeat_stmt = REPEAT repeat_control ';' stmt { stmt } END_REPEAT

';' .
 273 | repetition = numeric_expression .
 274 | resource_or_rename = resource_ref [AS rename_id] .
 275 | resource_ref = constant_ref | entity_ref | function_ref |
 procedure_ref | type_ref .
 276 | return_stmt = RETURN ['(' expression ')'] ';' .
 277 | rule_decl = rule_head [algorithm_head] { stmt } where_clause
 END_RULE ';' .
 278 | rule_head = RULE rule_id FOR '(' entity_ref { ',' entity_ref } ')'
 ';' .
 279 | rule_id = simple_id .

 280 | schema_body = { interface_specification } [constant_decl]
 { declaration | rule_decl } .
 281 | schema_decl = SCHEMA schema_id ';' schema_body END_SCHEMA ';' .
 282 | schema_id = simple_id .
 283 | selector = expression .
 284 | select_type = SELECT '(' named_types { ',' named_types } ')' .
 285 | set_type = SET [bound_spec] OF base_type .
 286 | sign = '+' | '-' .
 287 | simple_expression = term { add_like_op term } .
 288 | simple_factor = aggregate_initializer | entity_constructor |
 enumeration_reference | interval |

 query_expression | ([unary_op] ('(' expression
 ')' | primary)) .

 289 | simple_types = binary_type | boolean_type | integer_type |
 logical_type | number_type | real_type |

 string_type .

 290 | skip_stmt = SKIP ';' .
 291 | stmt = alias_stmt | assignment_stmt | case_stmt | compound_stmt |
 escape_stmt | if_stmt | null_stmt | procedure_call_stmt |
 repeat_stmt | return_stmt | skip_stmt .
 292 | string_literal = simple_string_literal | encoded_string_literal .
 293 | string_type = STRING [width_spec] .
 294 | subsuper = [supertype_constraint] [subtype_declaration] .
 295 | subtype_constraint = OF '(' supertype_expression ')' .
 296 | subtype_declaration = SUBTYPE OF '(' entity_ref { ',' entity_ref }
 ')' .
 297 | supertype_constraint = abstract_supertype_declaration |
 supertype_rule .
 298 | supertype_expression = supertype_factor { ANDOR supertype_factor } .
 299 | supertype_factor = supertype_term { AND supertype_term } .

 300 | supertype_rule = SUPERTYPE subtype_constraint .
 301 | supertype_term = entity_ref | one_of | '(' supertype_expression

 ')' .
 302 | syntax = schema_decl { schema_decl } .
 303 | term = factor { multiplication_like_op factor } .

EXPRESS-X Reference Manual

50

 304 | type_decl = TYPE type_id '=' underlying_type ';' [where_clause]
 END_TYPE ';' .
 305 | type_id = simple_id .
 306 | type_label = type_label_id | type_label_ref .
 307 | type_label_id = simple_id .
 308 | unary_op = '+' | '-' | NOT .
 309 | underlying_type = constructed_types | aggregation_types |
 simple_types | type_ref .

 310 | unique_clause = UNIQUE unique_rule ';' (unique_rule ';' } .
 311 | unique_rule = [label ':'] referenced_attribute { ','
 referenced_attribute } .
 312 | until_control = UNTIL expression .
 313 | use_clause = USE FROM schema_ref ['(' named_type_or_rename
 { ',' named_type_or_rename } ')'] ';' .
 314 | variable_id = simple_id .
 315 | where_clause = WHERE domain_rule ';' { domain_rule ';' } .
 316 | while_control = WHILE logical_expression .
 317 | width = numeric_expression .
 318 | width_spec = '(' width ')' [FIXED] .

EXPRESS-X Reference Manual

51

Appendix G: EXPRESS-X Extensions to the EXPRESS Language

G.1 Tokens Added

BEGIN_COMPOSE = 'begin_compose' .
BEGIN_MEMBER = 'begin_member' .
BEGIN_VIEW = 'begin_view' .
COMPOSE = 'compose' .
DECLARE = 'declare' .
DELETE = 'delete' .
END_COMPOSE = 'end_compose' .
END_GLOBAL = 'end_global' .
END_MEMBER = 'end_member' .
END_SCHEMA_MAP = 'end_schema_map' .
END_VIEW = 'end_view' .
EXCLUDE = 'exclude' .
GLOBAL = 'global' .
INSTANCE = 'instance' .
IS = 'is' .
MEMBER = 'member' .
NEW = 'new' .
SCHEMA_MAP = 'schema_map' .
VIEW = 'view' .
WHEN = 'when' .

G.2 Syntax Rules Added

cast = '{' simple_types | entity_id | type_id '}' .

coercion = select_coercion | subtype_coercion .

compose_decl = compose_head [algorithm_head] stmt {stmt}
 END_COMPOSE ';' .

compose_head = COMPOSE general_head [from_head] when_clause
BEGIN_COMPOSE .

delete_instance_stmt = DELETE general_ref { qualifier } ‘;’ .

delete_stmt = delete_instance_stmt .

exclude_clause = EXCLUDE member_component { member_component } .

extended_entity_ref = variable_id ':' parameter_type .

extended_id = [schema_id '::'] simple_id .

from_head = FROM '(' extended_entity_ref { ',' extended_entity_ref } ')' .

EXPRESS-X Reference Manual

52

from_stmt = from_head when_clause BEGIN stmt { stmt } END ';' .

general_head = ((name_id FOR extended_entity_ref) | extended_entity_ref)
 ‘;’ .

global_decl = GLOBAL { schema_instance_decl | instantiation_clause }
 END_GLOBAL ';' .

include_clause = INCLUDE member_component { member_component } .

init_stmt = NEW general_ref { qualifier } ';' .

instance_id = '#' extended_id .

instance_ref = instance_id

instantiation_clause = instance_id '=' entity_constructor ';' .

instantiation_stmt = instantiation_clause;

member_attr_stmt = [label ':'] parameter_type ':=' (SELF | attribute_ref)
 { qualifier } ';' .

member_component = member_attr_stmt | member_when_stmt;

member_decl = member_head BEGIN_MEMBER [include_clause]
 [exclude_clause] END_MEMBER ';' .

member_head = MEMBER general_head [from_head] [when_clause] .

member_when_stmt = when_clause BEGIN member_component { member_component }
 END ';' .

name_id = simple_id .

schema_instance_decl = DECLARE schema_instance_id INSTANCE OF schema_id
';' .

schema_instance_id = simple_id .

select_coercion = '{' (entity_id | type_id) '}' .

subtype_coercion = '{{' entity_id '}}' .

view_decl = view_head [algorithm_head] { stmt } END_VIEW ';' .

view_head = VIEW general_head from_head when_clause BEGIN_VIEW .

when_clause = WHEN domain_rule ';' { domain_rule ';' } .

when_stmt = when_clause BEGIN stmt { stmt } END ';' .

EXPRESS-X Reference Manual

53

G.3 Modifications or Extensions To The Existing EXPRESS Syntax Rules

assignment_stmt = [coercion] general_ref { qualifier } (':=' | '+=' | '-=')
 expression ‘;’ .

declaration = compose_decl | entity_decl | function_decl | member_decl
 | procedure_decl | type_decl | view_decl .

entity_id = extended_id .

primary = literal | ([cast] qualifiable_factor { qualifier }) .

qualifiable_factor = attribute_ref | constant_factor | function_call |
 general_ref | instance_ref | population .

rel_op_extended = rel_op | IN | LIKE | IS .

schema_body = { interface_specification } [constant_decl] { global_decl }
 { declaration | rule_decl } .

schema_decl = SCHEMA_MAP schema_id ‘;’ schema_body END_SCHEMA_MAP ‘;’ .

stmt = alias_stmt | assignment_stmt | case_stmt | compound_stmt |
 delete_stmt | escape_stmt | from_stmt | if_stmt | init_stmt |
 instantiation_stmt | null_stmt | procedure_call_stmt | repeat_stmt |
 return_stmt | skip_stmt | when_stmt .

type_id = extended_id .

	Table of Contents
	1 Introduction to EXPRESS-X
	2 Fundamental Principles
	3 Language Specification Syntax
	Appendix A: EXPRESS-X Example 1
	Appendix B: EXPRESS-X Example 2
	Appendix C: EXPRESS-X Example 3
	Appendix D: EXPRESS-X Example 4
	Appendix E: EXPRESS-X Example 5
	Appendix F: EXPRESS Language Syntax
	Appendix G: EXPRESS-X Extensions to the EXPRESS Language

